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% &  Three main clinical strategies to repair
gap injuries

1. Suturing together proximal
and distal ends

+ ‘Clean’ transection injury
- Tension in sutures

2. Autografting
+ Good reinnervation
- Donor site morbidity

3. Nerve guidance conduits
+ Bilocompatible materials
- Primitive design
- Limited regeneration

www.bgsm.edu/ortho/brachial_plexus_menu.htm
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Nerve Guidance Channels

e Collagen - Integra Life Sciences
NeuraGen™ nerve guide

e Silicone - SaluMedica’s
SaluBridge™ nerve cuff
e PGA — Neurotube (Synovis)

e PLLA/PCL — Neurolac (Polyganics)

Bell JHA and Haycock JW (2012). Next generation nerve guides - materials,
fabrication, growth factors and cell delivery. Tissue Engineering 18(2):116-28
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Present strategies
for repairing peripheral nerve

™ * To increase regeneration Permissive
distance microenvironment
Bioresorbable
¥¥ - To improve extent and ~ Bocompatie /
effectiveness of L8

reinnervation

* Involves a combination of l N\ Beneficial to nerve
1) Nerve guidance conduit Girical regeneration
2) Schwann cells applicable




A The

Lo e

B -4 University
= =

eXgayls Of
e Sheffield.
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* Involves a combination of l N\ Beneficial to nerve
1) Nerve guidance conduit Girical regeneration
2) Schwann cells applicable




The
University

& & Making a scaffold precisely
Micro-stereolithography

1. Manufacture of NGCs - PEG, PLA, PCL, PGS

2. Incorporate internal structure within the tube
to improve regeneration
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YFP mouse — 3mm

common fibular nerve injury model
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Graft versus nerve conduit repair

175-
-I- [J Conduit 3 Graft

J
“1NN I : H % i i
::: iee

254

Sprouting Index (%)

05 0 0.5 1.0 15 2.0 25 3.0 35 40
Repair Position (mm)

Pateman C, Harding A, Glen A, Taylor C, Christmas C, Robinson P, Rimmer S, Boissonade
F, Claeyssens F, Haycock JW. (2015) Nerve guides manufactured from photocurable
polymers to aid peripheral nerve repair. Biomaterials 49, 77-89.
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Present strategies for bioengineering
peripheral nerve

™ * To increase regeneration Permissive
distance microenvironment
Bioresorbable
¥¥ - To improve extent and ~ Bocompatie /
effectiveness of L8

reinnervation

* Involves a combination of l N\ Beneficial to nerve
1) Nerve guidance conduit Girical regeneration
2) Schwann cells applicable
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Electrospinning of aligned PCL microfibres

Increasing flow rates increase PCL
N fibre diameter

10 % PcL solution [l 20 % PCL solution

)=

E
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Charged fibre jet 2 10
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Syringe pump /-\ __g
(19
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4 6 9
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Dorsal Root Ganglion cultures

* On flat culture surfaces
DRG neurites form a
highly connected but
disorganised network

* Nuclei
* B-tubulin-IlI

* Can DRG neurites and
Schwann cells be
organised to resemble a
peripheral nerve?
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PCL aligned fibre scaffolds for
organised growth of DRG neurites and Schwann cells

1 um PCL aligned fibres

S-100

R-1ll Tubulin

S-100
+

B-lll Tubulin

Daud MFB, Pawar KC, Claeyssens F, Ryan AJ, Haycock JW (2012) An aligned 3D neuronal glial co-culture
model for peripheral nerve studies. Biomaterials 33(25) 5901-5913.
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Photocurable poly(caprolactone)
conduit + poly(caprolactone) fibres

el

Jonathon Field, PhD student (EPSRC), Materials Science & Engineering, University of Sheffield
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conduit + poly(caprolactone) fibres

Micro CT
iImaging of
NGCs

Fibre density delermined by
F [ Calculation [l Micro-CT software Il Fi
B Micro-CT software/Fijl

=

~
L

~
'

i

Fibre density in conduit (%)

e ¢ @

Low volume High volume
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conduit + poly(caprolactone) fibres

Micro CT
Imaging of
NGCs
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Culture insert for
NGC test devices

E12 chick dorsal root ganglion
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NGC test devices

3D In vitro assessment model
E12 chick dorsal root ganglion
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3D In vitro assessment model
E12 chick dorsal root ganglion

Light sheet microscopy (Zeiss Z1)
Blue = nuclei / Green = Blll tubulin / Red = S100p
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Surface modification of PCL fibres — air plasma

Steps in the Plasma Treatment Process

0.1 Evocuation of the chamber 0.2 Admission of the process gas and 0.3 Ventilation and removal of the
ignition of the plasma workpieces

Question — Does air plasma surface deposition of PCL fibres change
surface energy, elemental composition and adhesion / growth of
neurons in a nerve guide device?

Diener Electronic commercial plasma system (model ZEPTO, chamber volume: 2.6L) with connected
pump (Pfeiffer Vacuum Technology AG), 50 W (40 kHz) 0.4 mbar for 60 s.
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“Air plasma surface treatment of PCL fibres
X-ray photoelecton spectroscopy (XPS)

Sample Wide scan (%) Narrow scan
Cls region (%) O1s region (%)

C 0 N cc |cco |[co)-oc |coo [c=0 |[c=0 |c(0)-0
FB - #1 796 | 205 | 0 | 457 | 123 12.6 9.7 0 | 105 9.9
FB - #2 828 [ 17.2 | 0 | 503 13.3 11.6 7.6 0 9.4 7.8

] 793 [ 207 | o 0

FB - #3 406 | 14.8 13.6 10.2 10.2 | 106
FB+#1 | 781 | 176 | 09 | 195 | 251 13.1 56 | 49 | 106 | 7.0
FB+#2 | 784 | 178 | 12| 193 | 261 13.2 55 | 44 | 108 | 7.0
FB+#3 | 791 | 168 | 1.2 | 298 | 26.7 13.3 54 | 3.9 | 10.2 6.6
+ =Plasma
—=No Plasma

# = Position on the sample (1 = top, 2 = middle, 3 = bottom)
FB = fibre bundle
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Air plasma surface
treatment of PCL fibres
E12 Chick DRG

Light sheet microscopy (Zeiss Z1)

Blue = nuclei
Green = BllI tubulin
Red = S1008
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3D In vitro assessment model
E12 Chick DRG
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3D In vitro assessment model
E12 Chick DRG — PCL fibre diameter

Light sheet microscopy (Zeiss Z1)
Blue = nuclei / Green = Blll tubulin / Red = S100p
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E12 Chick DRG — PCL fibre diameter

Light sheet microscopy (Zeiss Z1)
Blue = nuclei / Green = Blll tubulin / Red = S100p




3D In vitro assessment model
E12 Chick DRG — PCL fibre diameter

e

Light sheet microscopy (Zeiss Z1)
Blue = nuclei / Green = Blll tubulin / Red = S100p
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3D In vitro assessment model
E12 Chick DRG — PCL fibre diameter
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Light sheet microscopy (Zeiss Z1)
Blue = nuclei / Green = Blll tubulin / Red = S100p
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3D In vitro assessment model
E12 Chick DRG — 7d and 21d (10um fibres)

No Plasma B Plasma
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= R 3D In vitro assessment model
- E12 Chick DRG — 7d and 21d

B Axons B Schwann cells

Average outgrowth distance (mm)
Maximum outgrowth distance (mm)
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Behbehani M, Glen A, Taylor CS, Schumaker A, Claeyssens F, Haycock JW
(2018) Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D
in vitro testing model. Int J Bioprinting 4(1) 1-12.
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Conclusions

3D printed nerve guides made from
PEG, and biodegradable PCL, PGS

e Support nerve repair in vivo

 Aligned internal fibre devices optimised
» Validated by microCT

« DRG models + light sheet

» Surface modification improves guided
nerve growth

« Natural material NGC programme
funded by Pak-UK fellowship IRC-BM /
COMSATs — Dr Ather Farook Khan

« Study completed and ready to file
patent for translation +
commercialization
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